AUTHOR	Hathway, James A., Ed.
TITLE	Individualized Teating System: Perfcraance Checks, I ISCS Le'vel I, Form A.
INSTITUTION	Fiorida State onivo. Iallahassee. Curriculum study
	Center.
SPONS AGENCY	National Science Poundation, Mashingtcn. D.C.
POB DATE	73
NOTE	71 p . F For related documents, see SE 028 460-48日
EDRS PRICE	uF01/PC03 Plus Postage.
DESCEIPTORS	Academic Achievement; Course Evaluation; Elementaty
	Secondary Educaticn: *Evaluation; *Individualizeds
	Programs: Junior High Schools: *Performance Tests;
	*Science Course Improvenent Project: Science
	Education: Science Materials: Science Tests; *Student Evaluation
IDENTIPIERS	*Intermediate Science Curriculum Study; *National
	Science fcundatio

ABSTRACT
(A, B_{0}, and C) for Level I of the Intermediate Science Curiculum Study. (ISCS). The three bocklets are considered one of four major suhdivisions of a set of individualized evaluation materials for Level I of the ISCS. This booklet (form A) "developed to assess the students' achievement of the crjectives of Level I, ccntains a set of performance checks equivalent to the performance checks of the other two forms (B and C). Each perfcrmance check has its oun code number which indicates the unit number and identifies whether it is based on core material or excursions. Lirections for studentar use of Ferformance checks are also inciuded. (HM)

Reproductions supplied by EDRS are the best that can be made from the criginal document.

INTERMEDIATE SCIENCE CURRICULUM STUDY

US DEPARTMENT OF HEALTH EDUCATION A WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO. DUCEO EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN. ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLIS,
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY
Mary L. Charles NSF

TO THE EDUCATIONAL RESOURCES iNFORMATION CENTER (ERIC)."

Performance Checks ISS LEVEL FORM A

ALL LEVELS
 Individualizing Objective. Testing (an ITP module)
 Evaluating and Reporting Progress (an ITP module)
 LEVEL! Performance Objectives, ISCS Level I
 Performance Checks, ISCS Level I, Forms A, B, and C
 Performance Assessment Resources, ISCS Level I, Parts 1 and 2

LEVEL II. Performance Objectives, ISCS Level II
Performance Checks, ISCS Level II, Forms A, B, and C
Performance Assessment Resources, ISCS Level II, Parts 1 and 2

LEVEL III Performance Objectives, ISCS Levei' III
Performance Checks, ISCS Level III, ES.WB, Forms A, B, and C WYY-IV, Forms A, B, and C
10-WU, Forms A, B, and C
WW-CP, Forms A, B; and C
Performance Assessment Resources, ISCS Level III, ES-WB
WYY-IV
IO-WU
WW-CP.

ACKNOWLEDGMENTS

The work presented or reported herein was supported by funds provided by the National Science Foundation. However, the opinions expressed herein dd nat necessarily reflect the position or policy of the National Science Foundation, and no official endorsement by the agency should be inferfed.

© 1973 THE FLORIDA STATE UNIVERSITY

All rights reserved. Printed in the United States of America. Published simultaneously in Canada. Copyright is claimed until 1978. Except for the rights to materials reserved by others, the Publishers and the copyright owner hereby grant permission to domestic persons of the United States 'and Canada for use of this work without charge in the English language in the United States and Canada after 1978 provided that the publications incorporating materials covered by the copyrights contain an acknowledgment of them and a statement that the publication is' not endorsed by the copyright owner. For conditions of use and permission to use materials contained herein for foreign publications in other than the English language, apply to the copyright owner. This publication, or parts thereof, may not be reproduced in any form by photographic, electrostatic, mechanical, or any othor method, for any use, including information storage arid retrieval, without written permission frem the publisher.

ILLUSTRATIONS: © 1973 GENERAL LEARNING CORPORATION ALL RIGHTS RESERVED.

ISCS STAFF

David D. Redfield, Co-Director
William R. Snyder, Co-Director
Ernest Burkman, Steering Committee Chairman

Robert L. Cocanougher, Art Director.
Stewart P. Därrow, Teacher Education
George O. Dawson, Teachér Education
Cheval Fagan, Artist
Ronald:N. Giese, Evaluation
James A. Hathway, Editor
Ad́rian D: Lovell, Administration and Field Trial Coordinator
Janet Mauney, Artist
Lynn H. Rogers, Artist
Millicent Shargel, Grammarian
Stephen C. Smith, Artist
Lois S. Wilson, Assistant Editor

MATERIALS DEVELOPMENT CONTRIBUTORS

Betsy Conlon Balzano, State University of New York at Brockport
Thomas Boehm, State University of New York at Albany
Linda Dubaldi, F.S.U.
William H. Fletcher, FS.U.
John R. Hassard, Georgia State University
H, Dale Luttrell, North Texas State University
Mildred MacMullen, Hudson, New York
E.Wesley McNair, F.S.U.

Luis A."Martinez-Perez; F.S.U.
Charles Mielcarski, Averill Park, New York
Lawrence E. Oliver, F.S.U.
Barney Parker, F.S.U.
Everett S. Stallings, F.S.U.
Paul H. Westmeyer, 'F.S.U.

FOREWORD

To implement an educational approach successfully, one must match the philosophy of evaluation with that of instruction. This is particularly true when individualization is the key element in the educational approach. Yet, as important as it is to achieve this match, the task is by no means simple for the teacher. In fact, without' specific resource materials to help him, he is apt to find the task overwhelming. For this reason, ISCS has developed a set of individualized evaluation materials as part of its Individualized Teacher Preparation (ITP) program. These materials are designed. to assist teachers in their transition to individualized instruction and to help them tailor their assessment of students' progress to the needs of all their students.

The' two modules cqncerned with evaluation, Individualizing Objective Testing and Evaluating and Reporting Progress, can be used by small groups of teachers in in** service settings or by individual teachers in a local school environment. Hopefully, they will do more than give each teacher an overview of individualized evaluation, These ITP modules suggest key strategies for achieving both subjective and objective evaluation of each student's progress. And to make 1t easier for teachers to put such strategies into practice, ISCS has produced the associated booklets entitled Performance Objectives, Performance Assessment Resources, and Performance Checks. Using these materials, the teacher can objectively assess the student's mastery of the processes, skills, and subject matter of the ISCS program. And the teacher can obtain, at the moment when they are needed, specific suggestions for remedying the student's identified'deficiencies.

If you are an ISCS teacher, selective use of these materials will guide you in devel-

* oping an ind(vidualized evaluation program best suited to your own settings and thus further enhance the individualized character of your ISCS program.-

The Co-Directors
Intermediate Science Curriculum Study
Rm 415, W.H. Johnston Building 415 North Monroe Street
Tallahassee, Florida 32301

NOTES TO THE STUDENT

Now that you have completed several chapters, excursions, and self evaluations, youare ready to help your teacher determine how well you are doing. The performance checks in this book will provide your teacher with this information. Then your teacher can help you with things you may not understand and can keep a record of your progress.

Read the next section carefully. It explains some important things about the performance checks in this book, and it gives you specific suggestions for using them.

What You Need to Know about Performance Checks

1. You do performance checks when you are ready. Performance checks are somewhat like the questions in the selfevaluations - you do them when you are ready, not when. the whole class is ready.
2. Your teacher ar both of you decide how maty you do. Your teacher or you and your teacher together will decide which ones you should do. You are not expected to do all of the performance checks.
3. There are three forms for each performance check. Every performance check is written in three forms $-\mathrm{A}, \mathrm{B}$, and C . (The title of this booklet tells you whether it is Form A, B, or C.) Usually the answers for each form are different. Wheh you do a check, you will use only one form. The A, B, and C. forms are always in different booklets." Within each booklet all the performance objectives for the same unit are listed together. These units are in numerical order. Each unit has performance checks based on core material and performance checks based on excursions.
4'. Each performance check has its own number. The number is in the outside margin of the page and will look like this: 03 -Core-17A or $05-$ Exc 17-2A. These numbers mean

4. Each performance check is separated from the other, There is a line before each performance check and one after it. Some performance checks have several parts, so do everything called for between the lines. When there is no line at the bottom of a page, you can expect to find the check con\&inued onto the next page.
5. Sometimes you will need to use equipment. If special materials are needed; they will be in boxes labeled with the same number and sometimes the same letter too as the performance check for which you need them.
6. Some performance checks have two or more answers. If more than one answer is correct, you must select all the correct choices. In such cases selecting just one answer is not enough.
7. Some performance checks have no enswers. Occasionally, you may be asked to do something that is impossible and to explain your answer. If so; say that the task is impossible and explain why.
8. You share books of performance checks and YOU DO NOT WRITE IN THEM. Write your answers on other paper: Give the number and form of the performance check for each answer you write. If you are to draw a graph, your teacher may provide you with grid paper.
9. Your teacher or his assistant will collect and mark your checks. And sometimes you must ask him to watch or assist. you as you do a check.
10. Sometimes a review procedure will be suggested. If you can't do a performance check, you may be asked to review a part of the text or a self-evaluation question. You may then be checked on the same material, so be sure you understand the material you review. Get help if you need it.

Get two test leads, a bulb and socket, and an ISCS battery from your teacher.
Charge the battery for one minute. Get your teacher to watch you. Now connect the bulb to the battery so that the bulb lights.

Study the diagram to see how you should connect test leads to make the bulb light: Then, write the two numbers fof each test lead that show where, the ends of eath lead should be connẹcted

1

Something that changes in an activity orexperiment and affects the rosults of it is called
a. an example.
b. a solution.
c. a problem.
d. a variable.

In box 01 -Core-4A you will find a circuit all set tup, Useethe gepd spare partsin the
Q1-Cote-4A box to find out why the bulb doesn't light. Which part is bad?

Get batteries A, C, and D from box 01-Core-5. Uṡe anyoother matefrials yout think you need. Which of the batteries las influence?

A hatitmer is used to transfer influence to nail Why must you swig a hammer before it can drive a nail into wood?

Match the following terms by brst listing the rumbers ($1 ; 2$ and 3) on yont fraper
 definition.

Terms

1. Component
2. Subsystem
3. System

intact witheactrother withip sustety
O1-Core-8A \quad On your paper, write the letter of each diagram which identifies a system. Also ex-

Díagram a

Diagram b

Diagram \mathbf{c} 01-Codre-9A

```
A
```

\therefore
\therefore
\therefore
\therefore
\therefore
\therefore
\therefore
\therefore
\therefore

On the diagram aboye, measure the distance between the follpwing point to the - matarest O.t cm.

1. What is the distance from point A to point B ?
2. What is the dekance from point C to point F ?
3. What is the distance from point D to point E ?

Ask-your teacher or ohis assisfantito begit tapping on the desk fot gou Tell him when to begin Use yout uSS timer todud out how lon he taps the desk:

an Data tables stione dataign an organized way
b. Dita tahfos teurd to reducterrors by ogatizing data.
e Dathturdes make it easiet to tind redationships.

Ce Altothest?

Which of the following tells the main advantage of tic metric system which makes it uselythe medyranent problems?
. Whys de doped in rate, mo nd most of the early scientists were French. h: The meter has a more logitalhistorical basis than the yard.
c. Ttitaints of the metric system are related by factors of the number ten, and the fefore: changing from one unit to another is easier.
da. All systems ox meastirementiare of equal value, but scientists needed a - continon bystefof units They happened to choose the metric system.

01 Exc 01-2A
The measurement: system used in ISCS.science is the
a. Hebrew system.
b. English system:
c. Russian system.
d. Metric system.

In Excursion 3, you studied two forces - lift and drag - acting on two sinkers. One force was greater than the other. You found this by making the two forces act directly on each other. Read the two examples below. Which one directly compares the two variables?
a. Mary ran around the school track. John ran around the block. Who can run faster?
b. John'and Mary raced each other around the school track. Who can run faster?

Which of the following is an operational definition?
a. A ruler is a device for measuring length. ${ }^{\text {" }}$
b. Light is the form of energy which causes the needle of a light meter to move. The amount of needle movement measures the intensity of the light.
c. Mass is the amount of matter in. an object and does rot yary from place to place.

Suppose that throughout the course everyone in your class used his own force meas-
02-Cora-2A uper scale marked in washer units.

1. Would this cause a problem?

2: Explain your answer.

Suppose you wanted to use your force measurer to find the weight of small feath-
$\because \quad$ 02-Core-3A er. List the letters of all of the following things that you would need for your force measyrer.
a. A blade thinner than the thin blade you already have
b: A blade thicker than the thin blade, but thinner than the thick blade
c. A scale calibrated in units from 0 N to 0.1 N
\because d' A longer scale card

Get an ISCS force, measurer, 2 blades, paper clips, and a newton scale card from the
02-Core-4A
suppliy area. From your teacher, get a spinigig disk and a skate wheel. 'Report to'
Hur teacher how much the spinigig disk weighs and how much the skate wisl
weighs.
Get two objects from box 02-Core-5A. Use an ISCS force measurer, an aluminum
02:Core-5A cup, paper, clips and a newton'scale, card to weigh each of the two objects.'. Write the difference in newtons between the weights.

John b̆rought his own washers from home to weigh on his force measurer. 'He added
02-Corè-6A ane washer at a time to a hook on the end of the force measurer blade. He made the data table shown below.

What do you conclude about the weights of the washers' John brought from home?

Larry did Excutsion 3, which compares weight and drag. 'On a separate piece of graph paper, label the axes as shown below. Then construct a graph of Larry's data, which are listed in the table below. The table st ws the dragging power of the dropping sinkers.. Draw a best-fit line for the plotted points.

Sinkers Dropped	Sinkers Dragged
2 4 6 8	

02-Côre-8Å

Write an operational definition for weight, using an ISCS force measurer in your definition.

Ask your teacher for a force measurer with an aluminum pin in it. 'Do not remove the pin.

Answer the following questions by listing the numbers (1,2 , and 3) on your paper and writing after each'number the answer to the corresponding question.

1. Does the force measurer have the thin or thick blade attached to it?
2. What is the number of the hole the pin is in?
3. How much force is on the aluminum pin?

From your teacher, get force 'measurer scale card 02-Core-10A. Use your force measurer with the thin blade to "weigh a sinker. Have your teacher watch you. Report the weight in the units shown on the scale cärd.

02-Core-11A \therefore Write on your paper the name of the metric unit you use in ISCS to measure force
02.Core-12A
: Suppose you want to khow wher a force is feting on a football. Write on your paper two kinds of changes you-would look for.

Get a compass and a nail from the supply area. Set the compass on your desk. Bring the nail very near to the fompass from three different directions. Watch what happens.

1. Is there a force acting between the nail and the compass?

2. How do you know?

, Diagramb

The two springs being squeezed by the hands are alike.

1. Which diagram shows the greater amount of force being applied?
2. Explain the reason for your choice.

An operational definition answers two questions. Write an operational definition for
02-Core-15A
fierce in which you answer those two questions.
Write on your paper the two questions you would have to answer about something if
02.Core-16A you wanted to write an operational definition for it.

Two sinkers are attached to the "blade of a force measurer, and the blade bends
02-Core-17A down. Name the force that is pulling on the blade.

John sat on a chair. After a minute, the chair legs gave way and fohn ended up on the floor. What force caused a change in the stiape of the chair?

State two reasons why it is difficult to define operationally such terms as love or
02-Core-19A
beauty.
Look at the diagrams of the measuring Instruments. What needs to be added to
then so that yoy could tell your tericher your measurement without having to show
him'the thermometer or the meterstick?

Tie or tape a magnet to a string, as shown below:" Hang the magnet on the thick force measurer blade. Measure the combined weight of the magnet and string, Number and record your results for each step of the following.

1. Record the combined weight of the magnet and string.
2. Attach a nail to the magnet as shown. Pull gently on the nail until the magnet releases it. What is the force measurer reading when the magnet releases the nail?
3. How much force did the magnet exert on the nail?

02-Coré-22A
List the letters of the cations described below in which there is a force acting in addition to gravity and friction.'
a. A motorcycle parked in a garage
b. A stone smashing through a window
c. A sinker sitting on a shelf
d. Two football players hitting head-on
c. A washer lifted from a desk

List four thing which should be true of an object if it is to be used as a standard unit of measurement.

Sol was given two old and uncalibrated spring scales, A : and B. He calibrated each spring scale two times. The two drawings below show the results of his calibrations for each scale. Sol must use one of these two scales in an experiment."

1. Which spring scale should he use?

\checkmark

In this course you often make several measurements which you are then asked to
02-Exc.06-1A multiply and divide. Suppose you were to use the scale below.

1 , Would it be easiest to repory. multiply, and divige the measurements if
the units on the scale were div ded ihto 9 , into 10 , or into 11 subunits? $2 \because$ Why?

02-Exc 06-2A \quad 1. From which of the three scales below could you report the most accurate 2. Why?

Write the letter of the best answer When the size of a unit of measurement such as the meter was first determined, it was
a. discovered by scientists:
b. ttaken from a list of stamdards passed down through the years.
c. naturally set by something in nature:
d. set by a group of men who agreed on its size.
$\therefore \because \quad . \quad 17$

The palm is a unit of length based on the width of a man's hand. The digit is a unit of length based on the width of a man's indlex finger.

1. Why aren't measurement units such as the palm and digit used very much today?
2. Why are standard units such as the meter and the gram used instead?

The brightness of a lighted Bulb was measured with a light meter at several distances from the bulb. The data were graphed as shown below. Notice that the light brightness decreases as the distance increases.

Compare the change in brightness bętween the djstances of 4 foot and 2 feet whe change between 4 feet and 8 feet. Choose the words which correctly complete the following two sentences.

1. When the bulb and meter are close together, a small change in distance produces a (large)(small) change in brightness.
2. When the meter and bulb are far apart, a large change in distance produces a (large)(small) change in brightness.

How can you lift a 40 lb box from the floor to the table with the least amount of work being done on the box? Select the best answer below.
\checkmark a. Lift it with your hands.
b. Push it up an inclined plane.
c. Use a pulley and a rope.
d. Any way you do it, the work on the box is the same.

Make the changes asked for in each of the following cases.
03-Core-3A

1. $7 \mathrm{~cm}=\ldots \mathrm{m}$
2. $0.7 \mathrm{~m}=-\ldots \mathrm{cm}$
3. $32 \mathrm{~cm}=\ldots \mathrm{m}$
4. $4: 2 \mathrm{~m}=\ldots \ldots \mathrm{cm}$

What is the metric unit used in ISCS for measuring work?
03-Core-4A

Find out how much work is done when you lift anelectricity measurer base from the floor to your desk top. Get the equipment you nqed to do this. Record your measurements in newtons and meters, and record the answer in the correct units.

Write an operational definition for work.

Complete the sentence betow.
03-Core-7A
Helen lifted the cart from the floor and put it on the table. Her science classmates said she was doing \qquad - on the'cart.

A force measurer was used to pull a box across the floor. What measurements below would you use to measure the work done on the box? Choose as many as are needed. Do not calculate the worrk.
a. The box moved for 80 seconds.
b. The box moved 100 cm .
c. The speed of the box was 1.25 cm per second.
d. The box required 8 newtons of force to be moved.

03-Core-10A

Mac uses the system shown to lift heavy truck tires. List four labeled components which form a subsystem in Mac's system.

Study the diagrams below.

1. List the letter of each diagram which shows a single system.
2. Explảin why any diagrams yòu chose represent systems.

Diagram a

Diagram b
-

Diagram c

Study the diagram of the electric drill.

1. List each of the sets of components listed belowwhich can be considered a subsystem.
2. Explain whly you selected the sets you did.

Select the phrases which describe the relationship between work and systems. A sys-
03-Core-13A tem can
a. be its own source of input work.
b. transfer input work.
c. use input work to do useful work.
d. operate with no input work.

 What is the bedtansyer chat you could give tim?
at Jinst a liffe, bif less than 0.8 Nm .
Q
b. Ex enty 8.8 Na

Et foto litte bifore than d8 N m

Find the awerage of each of the following two sets of numbers. Show your work.

1. 2.3, 4.5 , and 3.8
2. 4. $1,3.0$, and 4.3

George punched a hole in the bottom of a paper cup. He tried to count how many drops of water fell from the cup in one minute. His data from several trials are shown in the table below. Why is the average of 46 drops per minute probably closer to the actual count than the individual figures for the six trials?

Trial	Drops Per Minute
1	44
2	47
3	45
4	48
5	47
6	45
Average	46

. Six scientists measured the length of the same steel rod with the same meterstick. They got the following data.

Scientist	Length of ${ }^{\text {Rod }}$ (in cm)
1	73
2	73.9
3	74.1
4	74.0
5	73.9
6	74.1

Why shouldn't they all expect to get the same measurement for the steel rod?
Get from your teacher either a copy of the graph below or. grid paper. (On grid paper, copy the graph below, label the axes, plot the points, and draw the line.) Using the graph, find the mass in grams of the following.

1. 9 sinkers

4
2. 1 sinker
3. 11 sinkers
4. 4 sinkers

- 4. 4 sinkers

NUMBER OF SINKERS

Juan attached his force measurer to his science textbook. He then pulled the book across his desk. The force measurer reading as the book moved along. was 9 newtons. What is the name of the force he was measuring?

Why is the amount of input work done on a system always greater than the useful output work? force causes the tires to get hot?
'Think of an empty' garbage can being dragged across a concrete drive. What would 03-Core-25A happen to the amount of friction if the can were filled with garbage?

Mr. Smith wanted to determine which kind of graim grew best on his farm. He divided the farm into four sections, $1,2,3$, and 4. He put a different kind of seed in each section. Te also wanted to test whether fertilizer A or B was better for his soil. Hé put A on sections 1 and 3 and B on sections 2 ajnd 4 . What is wrong with Mr. STmith's experiment?

Jack did an activity in which he studied the bouncing of objects. He dropped two sinkers at the same time from shoulder height. One hit the floor; the other landed on a pile of three books.

1. Name a variable that is unchanged in both cases.
2. Name a variable that changes in the two cases.

A car tire manufacturer wants to know which of three kinds of cord material -steel, fiberglass, or nylon - will help his tires give the best mileage.
I. What variable will he vary on purpose in his experiment?
2. After the manufacturer has made the changes proposed in part 1, what variäble does he study the changes in?

A racing car owner wants to know which fuel will give his car the most speed. Naturally he will make the tests driving his own car. Name two other factors that the must keep uinchanged if his trials are to be useful.

In the pulley arrangement shown in the diagram below, the mass and the pulley to-
03-Exc 9-1A gether weigh $1 O N$ and will be lifted 10 cm . Read the sentences which follow. Select the one quantity in parentheses which best completes each sentence, and record your answers.

1. To raise the mass and pulley 10 cm ,

- the force would have to move $(5,10$, 20) cm.

2. The amount of force required to raise the combined weight of 10 N of the mass and the pulley by pulling on the rope would be about $(5,10,20)$ newtons. 1. In movable pulley systems, how does the input work required to lift an object compare with the optput work done on the object?
3. What is the main benefit of using movable pulleys to lift objects?

03-Exc 11:1A
Two ment tried to load a-roll of newsprint onto a truck. They tried to use a ten-foot long plank as an inclined plane. They didn't have enough force to roll the newsprint up the incline.

1. If the men got a twenty-foot long plank for an incline, would the force tequired to roll the newsprint onto the truck be decreased, increased, or not changed?
2. Why is this the case when a longer plank is used?

03-Exc 12-1A
Mrs. Jofnes holds a seesaw while Johnny, who weighs $500 \mathbb{N}$, climbs on the right end 3 meters from the pivot. After his sister Alice, who weighs 450 N , gets on the other end at 4 meters, Mrs. Jones lets go.

1. Will the greater moment then cause the seesaw to turn clockwise or counterclockwise
2. What is the amount of differeńce between the moments?

\therefore..

03-Exc 13-1A
Find the average to one decimal place for each set of numbers. Show your work. 1. $11 / 4,31 / 2,23 / 4$
2. $21 / 2,31 / 4,23 / 4$
, 1 ,

The wood block shown below is dragged three times over a table. Each time a different surface, \mathbf{A}, \mathbf{B}, or $\mathbb{C}_{;}$is on the table. Which statement below best describes the result? The force of friction
a. will be greatest on surface C because it has the largest area.
b. will be greatest on surface A because there is more weight on it.
c. will be the smallest on surface C because there is less weight per square inch on it.
d. will be the same on qull surfaces because the total welght acting on the surface is the same for A, B, and C. :

$\div 1$
.

Imagine that a spring is squeezed or a rubber band is stretched. What kind of energy is given to the spring or the rubber band? Select the best answer below.
a. motion energy
b. potential energy
c. gravitational energy
d. frictional energy

Charged batteries, gasoline, and sinkers hanging "on a string have potential energy.
04-Core-2A What is meant by potential energy as used in that sentence? :

The spinigig is lifted off the track at 5 and set back onto the track at 6 . Record the letters of any measurements you would use to calculate the change in the potential energy of the spinigig.
a. Weight of the spinigig in newtons
b. Weight of the spinigig track in newtons
c. Height 3 in meters
d. Height 2 above floor
e. Distance 4 up the track

A trip-hammer is used to drive steel fence posts into the ground. Three different size hammers are raised to different heights above the tops of three posts. Calculate the potential energy of each hammer before it is dropped. Show your calculations and answers on your paper.

Post Size	Weight of Hammer (in newtons)	Height above Post (in meterrs)
1. Small.	28.5	0.8
2. Medium	53.6	1.4
3. Large	75.0	

04 Core-5A \quad 1. If you lift a concrete block off the ground to the top of a wall, do you give it energy?
2. If so, what kind of energy do you give it? If not, why don't you give it energy?

04-Core-6A \quad| Your instructor has suspended an object, labeled 04-Core-7A, above the fldor. Use |
| :--- |
| your force measurer and a meterstick to find its potential energy. Show your meas- |
| urements and calculations. |

04-Care-8A Look at the diagram below. The finger pushing down on the ruler lifts the 0.5 kg mass.

1. Name the component doing the înput work.

- 2. Name the component receiving the output work.

04-Core-9A does work on somethilig else is called the
a. energy supplier.
b. innput work.
c. output work.
d. energy receiver.

Select the phrase that completes the following sentence. In a system, the object that has work done on it by something else is called the
a. input work.
b. output work.
c. energyireceiver.

State a way in which you can tell if an object has inotion energy. You may use an
04-Core-12A example if you wish.

Set in the roller bearing blocks, you have a 4 -disk spinigig with a string wrapped
04-Core-13A around its axle. Attached to the string is one sinker that can fall 1 meter and cause the spinigig to spin. What ieffect would adding more sinkers have on the spinigig's speed of rotation?

Suppose your spinigig turns 5 times in 10 seconds. What is its speed in turns per
04-Core-14A -second? Show your calculations on your paper.

What does the curved line on the grid tell you about the fish population in the lake?
04-Core-15A (Hirt: • How does the change in the fish population between the 5 th and 6 th years compare with the change between the 1 st and 2 nd years?)

Name the unit used to report the speed of aspinning object such as a spinigig.
04-Core-16A
Get some graph paper, ${ }^{\text {f }}$ draw a pair of axes, and label them as shown betow. Úse your
04-Core-17A grid and the table below to plot rocket speed against fuel used. Draw a best-fit line for the plotted points.

Rocket Speed Per MI of Fuel

Speed (m/sec)	*	$\begin{aligned} & \text { Fucl } \\ & (\mathrm{mi} / \mathrm{sec}) \end{aligned}$
2		13:
4		18
$6{ }^{\prime}$		22
8		25
10		26
12		28
¢ 14	\because	29
		30.
${ }^{1} 18^{\circ}$		$30 \cdots$

What two things does the best-fit curved line on the grid below tell you about the magnet?

04-Core-19A

04-Core-2QA

A spinigig with 2 disks and a string wrapped around its axle is. set into the roller skate wheels and placedpon the track. Attached to the string is one sinker that can fall one meter and cause the spinigig to spin. What effect would increasing the number of disks on the spinigig have on its speed of rotation?

Define mass. (Hint: Consider how it is used in the fellowing sentence.) Debbie compared the mass of the sinkers with the mass of the golf ball and found they were equal.

04-Core-21A A tow truck's winch lifted a car from the road. The car gained potential energy. What kind of energy did the winch apply to the car?

1. What kind of energy does a large rock have when it is held twenty feet above the ground by a rope?
2. If the rope is cut and the rock falls, its energy changes. What kind of energy is it.changed to?
3. What force acts upon the rock to change the energy after the rope is cut?

Look at the diagram below. A steel ball is tropped on rocks to crush them. The ball is lifted to a height of ten feet above the rocks by a man using a pulley.

1. Name the supplier of input energy to the system.
2. Name the receiver of output energy from the system.

When your hand moves, it has energy. It can beat on a bongo drum. ". How coutd.
0.Core-24A you measure the energy of a moving hand as it strikes the drum?

The force required to slide a brick on the sidewalk is 3.5 newtons. Bob threw a
04-Core-25A baseball at the brick and caused the brick to slide 2.0 meters. If atl the motion, energy of the baseball was given to the brick, how much motion energy did the baseball have?

In the drawings below, arrows correctly show the direction which five spinigigs are moving. However, some of the labels are incorrect. List the number of each of the incorrect labels.

Energy receiver Energy supplies Energy receiver Energy receiver Energy supplier

8
lo is the moon of the planet Jupiter. It is Jarger than earth's moon. The force of gravity on a 1 kg mass on Io is about. 1.78 newtons." On earth, it is about 9.8 newtons.

1. If a golf ball were taken from. the earth to lo, would its mass change?
2. What would happen to its weight?
3. How did you know the answers to give?

04-Exc 15-2A

One of the astronauts took a golf ball to the moon.

1. Did the mass of the golf ball change during the trip?
2. What have you learned about mass that supports your answer?

Answer both 1 and 2 below by selecting the letter that best completes the sentence in each case.

- "1. Excursion 16, "Forerunners of Space Travel," tells how eleven men who I lived from 400 B.C. to 1725^{4} A.D. developed ideas about astronomy. One thing that all of these men did was
a. invent instruments to measure or observe with.
b. contribute new ideas.
c. make maps of the earth or planets.
d.' build fockets or spaceships.

2. Newton said, "If I have seen further than other men, it is because I have stood on the shoulders of giants." He meant that
a. he was a very modest man' and didn't want praise.
b. he was short himself but could see farther fhen someone held him up.
c. 'he had the advantage of others' ideas and could improve and advance
them κ^{\prime}.
d. he could explain the gravity that holds stars in galaxies" because the others couldn't see outside the solar system.

Each of the following four statements describes a relationship between the variables age and weight. 'Beside the number of each statement, record the letter of the graph below which shows the same relationship.

1. As age increases, weight increases at a constant rate.
2. As age'increaseś, weight decreases at a changing rate.
3. As age increases, weight decreases at a constant rate.
4. As age increases, weight increases at a changing rate:

After the number of each of the following four statements, write the letter of the graph that illustrates the relationship described in the statement You may use the letter of a graph more than once.

1. When weight increases at a constant rate, speed decreases at a constant rate.
2. When weight increases at a constant rate, speed is not changed.
3. When weight decreases at a constant rate, speed inçreases at a constant rate.
4. When weight increases at a constant rate, speed increases at a constant rate.

A beach ball with water in it has a mass of 15 kg . It has been tossed at a speed of 3 meters per second and is traveling toward you. At the same time a 2 kg exercise ball is thrown toward you'at 15 meters per second'speed. Use the formula $\mathrm{KE}=1 / 2 \mathrm{~ms}^{2}$ to answer the following questions. Your answers will be in newton-meters.

- 1. What is the difference in the energy of the two moving objects? Show your calculations.

2. Which ball would be more difficult to'stop?

When a rubber band has been stretohed, what kind of ehergy does it have?

	Trial 1	Trial 2
Average of force of blade	8.7 N	7.4 N
Distance blade tip moved	0.019 m	0.046 m
Work done on cart	\because	$0.141 \mathrm{~N} \cdot \mathrm{~m}$

Brent used his force measurer as the input work supplier to his water-clock cart. When he reviewed his data, he noticed that in Trial 1 he had used a larger force than in Trial ${ }^{2}$. But he had done less work on the cart. . Could this be true? Explain your inswer.

John brought a toy çannon to class. , He found it took 1,5 newtons of force to start
05-Core-3A to compress the spring in the cannon, and the force had to be increased to 6.5 newtons to compress the spring completely. The distance the front of the spring moves when released is 0.06 m . What is the potential energy of the spring when fully compressed?

Give an operational definition of kinetic energy.
05-Core-4A

A motor is connected to a battery. How can you tell if the motor has kinetic 05-Core-5A energy?

What would you do to measure the amount of kinetic energy a moving cart has?
Study the diagram below. Jean pulled the blade of her force measurer all the way back to position E and released it.

1. Identify by letter the position at which the potential energy of the blade was the greatest.
2. Identify by letter the position at which the kinetic (motion) energy of the blade was the greatest.
,

3. Which of the following states the direction of movement X to Y or \hat{Z} to Y ?
4. Which of the following correctly states the amount of force acting to produce the motion $9.5 \mathrm{~N}, 2.1 \mathrm{~N}$, or 21.5 N ?

05-Core-9A

Look at the record below of the movement of a water-clock cart. This record was made by a moving cart which dropped a drop of water every two seconds,

1. List the letters between which the cart's speed is increasing:
2. List the letters: between which the cart's speed is decreasing.
3. List the letters between which the cartel speed is constant.

05-Core-10A
Suppose you put a ball on an inclined plane and release it without pushing it. What force causes the ball to roll down the incline?

05-Core-11A What force causes a marble rolling across the floor to slow down and stop?

An electric motor is an energy converter in which electrical energy is changed to useful output kinetic energy. When the output mechanical energy is measured, however, it is always less than the input electrical energy. What force is responsible for this decrease?.

1. Write the letter of the best chioice to complete the following sentence. When 84 newton meters of input work is done by a horse on a treadmill, the treadmill might do
a. 81.5 newtôn-meters of output work.
b. 84 newton-meters of output werk.
c. 88.5 newton-meters of output work.
2. Write the letter of the reason for your choice:
a. Because the horse doesn't waste any energy
b. Because the treadmill saves work, as a machine does
c. Because in a system input work is always greater than output work

Choose the correct word to complete the following sentence. "Hot-rod" Saxon -
05-Core-14A alwaysispins the wheels of his Coryette when he takes off from the school parking lot. This causes the temperature of the tires to (increase, decrease, stay the same).

Energy occurs in many forms. List six of these forms.
05-Core-15A

Think of the changes in energy that occurfo the following situation. A box
05-Core-16A

1. is lifted from the floor,
2. reaches its maximum height of 2 m and stops,
3. falls, and
4. is about to strike the floor.

For each numbered step above, select two things from the table below - the letter (a, b, c, or d) of the phrase which describes the potential energy of the box at that moment and the letter ($w, x, y, o r z$) of the phrase. which describes the kinetic. energy of the box at the same moment.

Potential Energy	Kinetic Energy
a. gains potential energy	w. gains kinetic energy
b. loses potential energy	x. receives input of kinetic energy
c. lowest potential energy	
d. greatest potential energy	y. no kinetic energy z. greatest kinetic energy

Describe how you can tell if light energy is present in some way besides seeing the light or an object which the light illuminates. Also state whatyou would need to doto masure the amount or intensity of the light.

Stephanie agreed that light could light up things and make them visible. She said light couldn't do work, though, and that therefore it isn't energy: Prove that Stephanie is wrong. Name an instrument which shows that light is a form of energy. Tell how the instrument shows that work is being done.

Get a palm glass, and tilt it until all the liquid is in one of the bulbs. Hold the full bulb gently in your hand, as shown if the picture below. Be sure the cross tube is below the bulbs and the empty bulb is higher. Choose the correct answer below. What causes the liquid to move toward the other bulb?
a. Heat energy
b. Light energy
c. 'Pressure
d. Gravity

CAUTION: HOLD GENTLY.

$05-\mathrm{Cang} 20 \mathrm{~A}$

Give two examples which show that electrical energy can be changed into kinetic energy.

05-Core-21A

Read the following story. While working on Chapter 10; Johnnie put nails into holes 1 and 3 of the force measurer and pushed the cart back until the blade touched the nail in hole 3. (You may look at a force measurer if you wish.) Then he obseryed the following things.

1. The blade went forward (from hole 3 to hole 1); pushing the cart.
2. The cart lifted the sinkers.

His partner stopped the cart, but it slipped.
3. The sinkers fell.
4. The cart slammed into the blade and pushed it back from hole 1.
5. The cart went forward, raising the sinkers.
6. \because The sinkers lay flat on the floot;

Beside the number of each step, write P-K if potential energy is being changed to kineticenergy and K-P if kinetic energy is being changed top potential energy, Write iN if there is no change in the form of energy.

05-Core-22A
Write the letters of all the statements that identify characteristics of onergy. Energy - can
a. be converted from one form to another.
b. be measureal by speed times distance.
c. be destroyed.
d. éxist in more than one form.
e. be transferred from one system to andther.

Examine the diagram below.

1. State the form or forms of input energy shown in the diagram.
2. State the form or forms of output energy shown in the diagram.

In your home, there are many things which convert one form of energy into another:
05-Core-24A

1. List three such energy converters found in your home.
$\because: 2$. State the form of the input and the output energy for each. For example, light bulbs input energy - electrical; output energy - heat and light.

A water clock drips 37 drops in 18 seconds. The water-cloćk cart leaves a trail of
05-Exc 20-1A
Water drops 3 cm apart. What is the speed of the cart in centimeters per second?

Pepito, an ISCS student, noticed an ant walking around the circumference of a 05-Exc 21-1A spinigig disk which hung in the rack.. The timer was going, so he timed the rant. It took 14 seconds for each trip around. How far did the ant walk in one trip? At what speed was it moving? You may get a spinigig, 50 cm of string, and a meterstick to make whatever measurements you need. Show your measurements and your calculations. Report your answer in centimeters per second.

The following things are known about a rocket.
05-Exc 22-1A
a. It has a mass of 1,800 mass units.
b. It has a thrust of $750,000 \mathrm{lbs}$.
c. It has a speed of 17,500 miles per hour.
d. It has an acceleration of 0 to $7,000 \mathrm{mph}$ in 4.5 sec .

Write the letter of each variable needed to calculate the rocket's momentum.

Assume that the equipment stry*n in the diagram below is all in good working order.

1. Will the bulb light?

Why do you believe the bulb will or will not light?

Get the bottle of blue solution labeled 0 Core-2. This is the same as the solution you used in Chapter 12. Which material in these solutions was responsible for the reddish-brown coating on the carbon rod?
a, Water.
b. Copper
c. Sulfate
d. Oxygen

The carbon rod in box 06 -Core-3 was coated with a substance during the activities done in Chapter 12. Name the material that coats the carbon rod.
A^{\wedge} car battery is properly connected to an electric battery charger. Choose the letter
06-Core-4A of thesenter below which describes the energy conversion that takes place within the battery during charging.
a. Electrical energy is changed into kinetic energy.
b. Chemicalenergy is changed into electrical energy.
c. Light energy is changed into heat energy:
d. Electrical.energy is changed into chemical energy.

1: What happens inside a rechargeable automobile battery when it is being:
06-Core-6A charged?
2. When it discharges to the automobide, what happens inside the battery?

Luis has a battery. 2 bulbs,' and 3 , test leads. What must he do to make a complete
06.Core-7A electrical circuit? You may use a diagrdm as part of your answer.

06-Corg-8A
Go get 1 chargfd flashlight battery, 2 bulbs and sockets, and 3 test leads. Using these materials, connect the two bulbs in a series circuit. Show your teacher what you have done.

06-Core-9A

Diagram a circuit that shows a swithea battery, a motor, and two light bulbs connected in series.

06-Core-10A
For each of the following statements, tell whether he electrical devices mentioned are wired in parallel or in series with each other. Write series or parallel on your answer sheet next to the number for each statement.

1. Suppose a fuse (circuit breaker) in a house is removed and that causes the television set in the living room to go off. How are the fuse (circuit breaker) and the television wired?
2. A toaster and a light are both plugged into the receptacles of a wall outlet.

The toast pops up, and the toaster shuts off: But the light remains on. How are the toaster and the light wired?
3. Suppose you wish to roast meat in an electric oveg. You set the electric timer on yqur oven for two hours. At the end of two hours, the timer rings and shuts off. The oven also shuts off. How are the timer and the oven wired?

06-Core-11A
Diagram a circuit containing a battery, a motor, and two bulbs wired in parallel.

06-Core-12A
Get the following: 1 charged " D " size battery, 3 bulbs and sockets, and 6 test leads. Using these materials, connect the three bulbs in a parallel circuit. Show your teacher what you have done.

06-Core-13A
.

Look at the circuit diagramed below. Suppose one more bulb is added in series with the circuit. How would this affect the amount of electrical energy the motor and the other bulbs receive?

The amount of current flowing in the circuit diagramed below can be reduced in several ways. State one way in which the current can be reduced but not topped.

Each diagram below represents either a series of -a parallel circuit. On your paper,
6-Core-15A beside the number of each diagram, name the type of circuit it shows.

06-Core-16A When electricity is passed through a resistor, the temperature of the resistor rises. What causes this?

06 Core-17A \quad| Suppose that a compass witl its magnetic needle is placed under the wir of n elec- |
| :--- |
| trical circuit, as shown below. What will happen when the switch is closed? |

06-Core-18A How does changing the number of loops in a coil of wire affect its magnetic strength?

06-Core-19A
Record the letter of each statement below which identifies a characteristic of energy. Energy can
a. be measured by speed multiplied by distance.
b. be destroyed.
c: exist in more than one form.
d. be transferred from one system to another.

06-Exc 23-1A
This battery, as it is pictured, will not produce enough electricity to light a bulb. Write the letter of any change listed below which would let the battery produce more electrical energy.
a. Using strips made of different metals
b. Using a beaker rather than a battery jar
c. Using a different solution, such as copper sulfate
d. Using a cardboard divider

Chemical energy can be stored and then changed.to other forms. Write the letters of any sentences below in which it is possible to say that the stored chemical energy is changing to other forms.
a. The brown coating on the lead strip in your ISCS battery distrppeared when electricity was produced.
b. The zinc metal strip turned copper-colored when placed in copper sulfate solution and the solution got hot.
c. The'addition of glycerine to potassium permanganate produced light,
d. None of those are correct.

Nick measures the weight of a beaker, using a balance like you use in your ISCS course. He gets a weight of 25.0 g . Next he measures the same beaker using a more precise balance - a centigram, or triple beam balance, as it is sometimes called. He gets a weight of 24.98 . f . Finally k_{k} he uses an electrical balance, which gives him a weight of 24.976 g . Nick says now he knows that the 25.0 g weight he recorded earlier is in error and that the weight of the beaker is exactly. 24.976 g .

1. Do you agree or disagree with Nick?
${ }^{2}$: Why?
Luis plotted points for data he collected using a spinigig. The points were located as
06-Exc 25-2A shown on the grid below. 'Get grid paper from your teacher. Labet the axis, and plot the points as shown below. Then draw the best-fit line for the points.

06-Exc 26-1A
,
:

The electrical outlets in Iggy's house are wired in parallel. Write the letter of the sentence below that explains what that means.
a. The circuit contains more light bulbs than if it had been wired in series.
b. The TV, stove, and stereo will work whether or not they are switched on.
c. If the TV is switched off, the fan also stops running.
d. The electricity can flow through the circuits in any one of several paths.
e. All of the above are"correct.
06.Exc 27.1A

The following diagram shows a copper wire passing through a piece of cardboard on which several compasses have been placed. On your answer sheet, trace the cardboard and compasses. Then, use arrows to show the direction the compass needles will point when the switch is closed and electricity is passing through the wire.

\qquad

Select the answer which is not true of a scientific model.
a. It explains observations.
$b_{\text {; }}$ It is an experimental observation.
c. It may in some cases be represented by a physical'object or a sketch.
d. It is useful.

Select the best answer. Scientific models come into existence by being
a. discovered in nature, using telescopes.
b. found among data and pieced together.
c. extracted from nature, using microscopes.
d. thought up by men, using thetr observations.

State two things a good scientific model does.
07.Core-3A

Select the statement below which best fits your understanding of the models that
07-Core-4A scientists use. A scientific model
a. provides correct answers to all scientific questions.
b. describes what actually happens in nature and therefore is correct.
$\cdot \mathrm{c}$. is not used because it is correct, but because it ${ }^{\prime}$ is useful in explaining observations and predicting other observations.
-d. cannot be shown to be incorrect.

The ISCS model for electricity uses the idea of the electroparticle. List three
07-Core-5A characteristics that are assumed to be true of the ISCS electroparticle.

The diagram below shows an ISCS battery charger and an ISCS battery. On your
07-Core-6A answer sheet, describe the path through the battery-battery charger circuit that we assume electroparticles follow. Tell what happens to the electroparticles at each c step.

Can scientists develop more than on model which can be used to explain light? If
07-Core-7A not, why not? If so, how would a scentist decide which model to use?

07-Core-8A
When a charged battery is connected to a light bulb and the circuit is complexe, the bulb lights. Using the ISCS electroparticle model, explain how the energy travels through the circuit and how it makes the bulb light.

07-Core-10A \quadTell what happens at the poles (terminals) of a battery when there is a complete circuit to a motor. Explain your answer in/erms of the ISCS electroparticle model.
07-Core-11A
Use the electroparticle model to explain what happens to the current flow in a cir-
cuit when a resistor is added.

07.Core-13A

List three things about the flow of electricity through a circuit that are not explained by the ISCS electroparticje model.

Select the best answer below. Accepted unit of measuremerit come into existence when they are
a. found by experience.'
b. defined by people.
c. set by nature...
d. experimentally discovered by scientists.

One way to describe electricity is to use the electroparticle model. Using this model,
07.Core-17A describe the process of charging a battery.

Name the standard unit for measüring electrical current.
O7-Core-18A

What is the standard unit for measuring electrical energy carried by an electroparticle?
07-Core-19A

Carefulty study the setup your teacher has assembled in box 07 -Core-20. As it is
07-Core-20A set up, it is an ammeter. Change it into a voltmeter. Show your setup to your teacher.

Get an ISCS electricity measurer kit, four D batteries in holders, five test leads, and
07-Core-21A a blank tongue depressor mounted on a $1 / 2 \mathrm{~kg}$ mass with rubber bands. Using these materials, make a voltmeter scale for the electricity measurer.

1. Construct circuit A. Clofse the switch and measure the current flow, and report your measurements.' Show your ammeter hookup to your teacher. 2. Then hook up circuit B. Close the switch and measure and report the total current flowing in the circuit. Again show your hookup to your teacher.

Cirquit A
Circuit B

John connects an electricity measurer, closes the switch, and the pointer moves downward on the scale, as shown in the diagram below. What can he do to cause the pointer to deflect upward on the scale?

07-Core-24A
How will adding one more bulb in series in this circuit affect the amount of electrical energy each of the other bulbs receives?

A stoppered bottle with a message inside has been thrown into a calm sea by a prisoner on a pirate ship. The captain sees the bottle and tries to shoot it with the ship's cannọn. All he does is make waves with the cannon' balls. "The wâves pass under the floating bottle. Which of the following statements best describes the motion of the bottle in the water?
a. Away from the ship
b. Towards the ship
c.. Up and dowp in nearly the same spot
d. Impossible to answer unless you know if the wates are moving away fom or toward the ship

Place 2 inches of water in a water trough, and put a small cork in the middle of it.
07-Exc 28-2A With a pencil, slowly tan the surface of the water at one end of the pan, creating a series of waves. Does the cork-water system move horizontally towards or away from the wave source, or doesn't the system move horizontally at all? What, if anything, travels across the water's surface?

Read the following story. Assume that both persons are stating correct facts. Zack
07-Exc 28-3A Zap is training people to operate light shows. He explains the theory of series circuits, using the electroparticle model of electricity. This model is fairly simple and ${ }^{*}$. explains all the observations his students will make. One of his students brings in a new book which explains series circuits, using the new, but complicated, electron model for electricity. Would the student be right to say that because the electroparticle model is incomplete, it is wrong and should never be used? Explain your answer.

Select the best answer below. The gravitron, a particle of gravity, is a model pro-
07-Exc 29-1A posed to explain gravity. Most scientists will accept the gravitron model
a. if forces other than gravity can also be explained in terms of gravitrons.
b. if thinking about gravity as tiny particles is useful in explaining gravity.
a c. if a law is passed that gravity can only exist if it is in the tiny particles described in the model.
d. only if gravitrons are seen in experiments.

Suppose that in 1970 nearly all scientists accepted the wave model for heat. . This would mean that
a. they had direct proof that heat traveled in waves.
b. at least a few scientists had observed heat traveling as waves.
c: thinking about heat as though it traveled in waves explained the observations made to that date.
d. \cdot heat had the exact properties of a water wave:
c. no other model could tit the observations made to date.

Pretend that nearly all scientists accept the eleotroparticle model of elecfricity described in Excursion 29. Choose the entry below which best describes one of the things that acceptance implies.
a. Scientists have seen electricity traveling as electroparticles.
b. The model must be revised to incorporate any new observations that don't agree with it.
c. No other model could fit the observations made to date:
d. It answers all their questions about electricity.
e. None of the above are correct.

Two wires, A and B are positioned as in Diagram 1. when the switches are open. Diagram 2^{7} shows that when the switches are closed, wires A änd B will attract each other. Suppose that in Diagram 2 in the circuit containing wire A the electroparticles come out of the battery through terminal 1 and reenter the battery through terminal 2.

1. Through which terminal in the circuit containing wine B do the electroparticles come out of the battery?
2. Throtagh which terminal in the circuit containing wire B do the electroparticles go back into the battery?

A toy manufacturer wants to make, two battery-operated walking dolls which operate on two ordinary batteries. He advertises one doll as "Walking Wilma - she walks slowly, but she'll walk longer than any other doll you can "buy." He advertises the other doll as "Running Rowena - 'she runs short races faster than" any other doll made today."
For each doll, state whether the doll's batteries should be connected in series or in parallel: Explain your choices, using the electroparticle model.

Susie the Snoozing Doll operates on two batteries connected in parallel. The motor that operates her arms and the motor that operates her legs as she stretches can be thought of as two similar resistors. The manufacturer plans a new, improved Susie who can move her head from side to side. This movement will require a third motor (resistor). In addition, the manufacturer plans to add a third battery in parallel. Will a voltmeter reading taken on the new improved Susie be more than, equal to, or less. than a voltmeter reading taken on the older version of Susie? Explain your answer, using the electroparticle model.

Wanda the Walking Doll operates on two batteries and motors connected in'series.
07-Exc 33-2A
The motor that operates her arm's and the motor that operates her legs can bé thought of as two resistors. The manufactúrer plans a new, impróved Wanda, who can move her head This movement will be a third motor the same as the other two. In addition to the motor, the manufacturer plans to add a third battery in series. Will an ammeter reading taken in the new; improved Wanda be more than, equal to, or less than an ammeter reading taken in the older version of Wanda? Explain your answer, using the electroparticle model.

To measure the current flowing through a circuit, you must connect an ammeter in series with the circuit rather than parallel to it.' Use the electroparticle model to explain why.

Suppose you need to measure the voltage available to a motor in a circuit. How \because 08-Core-2A should the voltmeter be connected into the circuit? If you wish, you may use a diagram as part of your answer.

Study the circuit below. Describe how you cöuld detect and measure voltage at the bulb when the switch is closed. Name any other piece of equipment you would need. 'Tell which letters on the diagram ${ }^{2}$ show the places, where the equipment should be connected.

1

In the diagram below, the meters are correctly connected to measure current andvoltage. Decide for yourself how each meter is connected and whether it is an ammeter or a voltmeter. Then, record on your answer sheet the words in parentheses that best complete the statements below.

I. Meter X is connected in (series, parallel) with the light bulb. Therefore, Meter X is (an ammeter, a voltmeter).
2. Since Meter Y is connected in (series, parallek) with the light bulb, it is (an ammetel) a voltmeter).
${ }^{2}$ A light bulb receives 0.2 amperes and 6 volts for 10 seconds. Find the total electrical energy received by the bulb. Show yout work, and use the correct units.
08-Core-6A . Choose the correct answer below. What is the formula for calcolating the total electrical ẹnergy supplied in' a given cirčuit?
. a. Volts plus amperes divided by time
b. Volts minus amperes ${ }^{\text {p }}$ plus time
c. Volts times amperes times time
d. Volts divided by amperes.times time

08-Core.7A
 Below is a diagram of a complete circuit in which a bulb is lit. What three variables ${ }^{\text {o }}$

 must you measure to determine the total amount of electrical energy that the bulb receives?

08-Córe-8A
Get the assembled circuit in box 08-Core-8A, an electricity measurer, a timer; voltmeter and ammeter scales, and two thest leads. Disconnect the battery, charge it, and replace it in the circuit. Measure how much electrical energy is supplied to one of the bulbs in the circuit in a fifteen-second period: Report your measurements and calculatiọns.

08-Care-9A - Dr. Blades sent his students to the Everglades to collect data about birds. Jim and Pat were to collect data on species of birds. Their observations are shown in the chayt below:
$\left\{\begin{array}{|l|l|l|l|l|l|}\hline \text { Student } & \begin{array}{l}\text { No. of } \\ \text { Birds }\end{array} & \begin{array}{l}\text { No. of } \\ \text { Nests }\end{array} & \begin{array}{l}\text { Eggs } \\ \text { per Nest }\end{array} & \begin{array}{l}\text { Food per Bird }\end{array} & \begin{array}{l}\text { No. of Birds } \\ \text { in Flock }\end{array} \\ \hline \text { Jim } & 5 & 565 & 300 & 2 \text { to } 4 & \begin{array}{l}\text { about I lb of } \\ \text { insects per day }\end{array} \\ \hline \text { Pat to } 6 \\ \hline & \text { lots } & \text { lots } & \text { average } & \text { lots of insects } & \text { small } \\ \hline\end{array}\right.$

Fior what two reasons do scientists prefer the kinds of observations Jim made?

Electricity is used to do many things. From the list below; select only those situations in which electrical energy does work which you can actually observe. Electrical energy
a: heats a burner on an electric stove.
b. operates a mixer.
c. operates a radio.
d. operates a fan.
e. operatés an electric lawn mower.

The diagrams below are of two electrical circuits labeled Circuits A and B. Get a
08-Core-11A voltmeter and the materials to construct the circuits. After constructing the circuits as shown, measure the voltage across each entire circuit. Record the voltage, and show your setuip to your teacher. Be sure your battery is charged before you make your measurements.

Circuit A
Circuit B

Circuits A and Bare shown below. Each contains one ISCS battery and four resistors
08-Core-12A connegcted by test leads. However, Circuit A has more total resistance to current flow than Circuit B. All of the resistors in both circuits are the same. Why does Circuit A have more total resistance than Circuit B?

Circuit A
Circuit B

08-Core-13A
$1 \div \vdots$

Circuit, \mathbf{A} and Circuit B below both have identical components, but they are connected differently. Select the phrases in parentheses which best complete the sentencés.

I: In Circuit A, the current flows through (each resistor by a separate path, all resistors one after another).
2. In Circuit A, the total resistance to current flow is (less than, greater than) the current flow in Circuit B.

Circuit A

-Circuit B

Operationally define battery energy, using the equipment shown below. (Hint: Remember that an operational definition answers two questions,

String

Sinkers

In the following problem, let guart cans of oil stand for energy being suppled from one location to another. Aftef the number of each question, write the lettet of the statement below which answers it best.
Imagine that a large number of quart cans of Number 30 motor oil are to be removed from a warehouse and stacked in a truck outside the warehouse.

1. Which part of the operation is most like an electroparticle?
2. Which part of the operation is most like a volt?
3. Which part of the operation is most like an ampere?

1
a. The length of time a person works
b. The number of cans a person can carry at one time
c. The number of persons available to move the cans
$\therefore \mathrm{d}$. The quality of the oil
e. The number of cans put on the truck per hour.

There is a floor lamp next to lggy's fuvorite reading chair. Record the letters of all of the variables in the list below which affect the power received by the bulb when it is turned on.
a. The voltage reading at the lamp is 120 volts.
b. The current flowing through the lamp is one ampere.
c. The bulb releases 20 calories of heat per minute.
d. The bulb is a soft-white bulb.
c. There are two other lighted 100 -watt bulbs in the room.
f. The bulb has just been turned off after burning for two hours.

Set up the circuit shown in the diagram. Be sure you use a freshly charged battery: Then connect one electricity measurer as an ammeter and the other as a voltmeter to measure the current flow and voltage of this circuit. Calculate the power of the circuit. Record yoùr answer, and show it to your teacher before you dismantle your setup.

08-Exc 36-1A

The wires in Tessie the Tumbling Doll are all made ρ f the same thickness of copper. The resistance of the wire is 3 ohms when the voltage is 9 volts and the current is 3 amps . (A. different model of Tessie is identical except that more batteries are required, thus producing more voltage and current. What would you expect the resistance of the wire to be in this version of Tessie - more than, equal to, or less than 3 ohms? Explain your answer, using the electroparticle model.

08-Exc 37-1A
Get the box labeled 08-Exc 37-1. What will happen if the taped magnet is turned so that its taped end is away. from the coil? Explain your answer.

08-Exc 38-1A Phyllis the Physical Fitness Doll has a motor inside her which causes her to move her arms up and down, lifting a weight. Describe what you would need to know in order to determine how much work the toy's motor can do in two minutes.

08-Exc 39-1A
In Excursion. 39, you were told: "You have learned about electricity from activities like the ones in the textbook without too much, trouble. ' It was the explorers who had a hard time." What helps have you had that the explorers did not have which makes your learning about olectricity casier than theirs? You may refer to Excursion. 39 to answer the question.
.Fill the air piston with water to the 2.0 cc mark. Then show the air piston to your teacher.

Box 09-Core-2 contains an air piston partly filled with a liquid. Look at the air
09-Core-2A piston, and record the volume of liquid in it.

Which of the following wilh result from increasing the temperature of water?
09-Core-3A
a. The volume of the water increases.
b. The mass of the water changes.
c. The water glows.
d. The water changes to iodine.

A company needs to design a device which will show very tiny changes in temperature ard will have the temperature marks on the scale widely spaced. If you had to build suich a device, what would you use for the expanding substance in it?
a. Garbon dioxide
b. Water
c. Iron
d. Plastic

As shown below, a Falitenheit and a Celsius thermometer scale have different numbers to indicate the freezing point of water: Explain why the freezing point can be . represented by two different numbers.

\because Mrs. Collins went" to the store to buy a piece of rope. She wanted 40 pinkies (40 little-finger lengths) af the. rope. A young clerk measured the rope with her pinkie.
v When Mrs. Gollins measured the tope, using her own pinkie, it measured oilly $38^{\text {" }}$ pinkies. Feeling that she had bee cheated by the clerk who measured the rope, she went to the manager of the store and complained., What is necessary to avoid sucti confusion in the future?

09-Core-7A $\ddots \quad$ What is the standard unit used by scientists and in ISCS for measuring temperature?

09-Core-10A You have used a thermometer which contains a liquid in a tube. Describe how it works.

09-Core-11A
Mrs. Pickens couldn't get the lid off a pickle jar. She turned the jar upside down and lowered the lid into a py of hot water. Soon, she was able to twist the lid off easily. Why did heating the lid cause it to loosen?

09-Core-12A
Suppose that you have been given a sample of liquid water whose mass you know. You have taken its temperature before and after heating it. Write an operational definition for the change in its heat content. three minutes?

- A 100 g sample of water was heated for ten minutes. The temperature was $25^{\circ} \mathrm{C}$ higher after heating than before. What would the temperature change be if a 50 g sample of water were heated under the same conditions for ten minutes?
a. $12.5^{\circ} \mathrm{C}$.
b. $25^{\circ} \mathrm{C}$
c. $50^{\circ} \mathrm{C}$
d. $75^{\circ} \mathrm{C}$

What does a thermometer measure?
Which of the following is a standard unit for measuring heat?
a. temperature b. degree c. calorie d. Celsius

> One model for heat assumes that heat is a substance which can flow between objects and whose quantity determines the temperature of objects. 'What are two observable properties of heat that support this heat-substance model?

The diagram shows that the level of water in the test tube was at B before the test

- 09-Core-18A tube was heated in the beaker of water. After heating, the water in the tube rose to level A. The heat-substance model can explain this. From the following list, select the letters of the four statements which support the heat-substance explanation of how heat gets from the burner flame into the water in the test tube. The heat substance must .
a. be composed of large particles.
b. be able to move.
c. take up space.
d. be pushed.
e. move as rapidly as light.
f. have mass.
g. be able to reproduce.
h. be made up of tiny particles.

Suppose someone said that cold objects have cold substance in them and that when a hot and a cold object are placed together, the cold substance flows into the hot object and the cold ybject gets warmer, not because it gains heat but because it loses cold substance. Use the activities you have done with heat and their results to show that it is heat, not cold, that is transferred.

The aluminum cans labeled A, B, and C are identical. Each has a mass of 40 grans. Assume that \mathbf{A} is heated, B is cooled, and C is left at room temperature. Which of the following results can, you expeot?
a. B will weigh more than elther \mathbf{A} or \mathbf{C}.
b. B will weigh less than either A or C.
c. A will be largér than B or C.
d. The size of B will not change.

09-Exc 40-1A
Which of the following characteristics make a liquid a bad choice for a thermometer used to measure the temperature of water samples?
a. A boiling temperature lower than water's
b. A boiling temperature higher than water's
c. A freezing temperature lower than water's
d. A freezing temperature higher than water's
e. None of the above

09-Exc 41-1A
If, you hear the TV weather girl say that the temperature will drop 10° tonight, does

- It make any difference whether she means a temperature drop of 10° Celsius or a temperature drop of 10° Fahrenheit? Explain your answer, using information from the diagram below.

Assume that four containers of water, A, B, C, and D, are placed in contact with each other as shown. Select the response below which indicates the directions of heat flow that occur as the containers touch each other. Ignore he heat lost to the air.
a. B to A, B to C , and D to C
b. A to B, C to B, and C to D
c. A to B, B to C, and C to ${ }^{\circ} D$
d. B to A, C to B, and D to C

1 \cdots

The four containers, A, B, C, and D, each hold the same amount of water. They are placed in contact with each other inside a box which allows no heat to escape or enter. Approximately what will be the temperature of the water in container B after one hour?
a. Between $60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$
b. Between $55^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$
c. More than $70^{\circ} \mathrm{C}$
d. Less than $55^{\circ} \mathrm{C}$

A new substance is formed that exists as a gas, a liquid, and a solid, depending on its temperature. In which state of matter would you èxpect it to be the poorest conductor of heat?
a. Gas !
b. Liquid
c. Solid
d. Either b or C
e. Texas

Jerry' lit burners under the three beakers ($A ; B$, and C) at the same time. He also put thermometers ipto the beakers at equal distances from the heat source, as shown. 1. In which of the beakers will the thermometer begin to show changes in temperature first?
2. Why?

10-Core-5A
A couple of students suggested to their teacher that Activities 20-7 and 20-8 did not provide good enough reásons to reject the heat-substance model. They said that the balance they used was too crude to detect any slight changes in the mass of the watter. What change could you make in the activities which would make it possible to detect small changes in mass?
10.Core-6A

Two $1 / 2 \mathrm{~kg}$ masses are exactly balanced on the pegboard bakance as shown. Suppose the left-hand mass is heated until it gets red hot. The right-hand mass would
a. move down.
b. move up slightly.
c. move way up.
d. not move at all.
\sum_{n}

In the following story, assume that both doctors' facts are correct. Dr. Bright is an eye doctor who writes presoriptions for glasses., The model he uses assumes that light travels in straight lines except when it goes from one substance to another; then, it bends. Dr. Hoberman, a physicist, uses a model whieh says that light is like a wave and does not travel in straight lines.
Dr. Hoberman says to Dr. Bright, "Our model and equations aren't used by scientists anymore. The model does not fit aH the observations made, and it does not suggest further experiments."
Dr, Bright answers, "The model I use explains all the observations included in the optics of lens making. Furthermore, the arithmetic involved is fairly simple and quick. If I used the eqquations of your wave theory, my patients would be blind beforel got thèir glasses ready."

1. Should Dr. Bright stop using the older modeland use the newer, broader model which explains more phenomena of light?
2. Why did you give the answer you did?

Select the best answer. ${ }^{\text {'Scientific models come into existence by being }}$
a. discovered in test tubes.
b. found in nature by direct observation.
c. ' produced as part of the data of an experiment.
d. thought up by people.

Select the letter of the phrase below which best completes this sentence. Scientists use the heat-as-energy model because it
a. provides 'correct answers to all questions about heat.
b. describes what heat actually is in nature and is therefore correct.
c. helps to explain observations and to predict other observations.
d. is the only true model for heat, and seientists found it.
a. they have direct proof that heat is energy.
b. at least a few scientists have seen heat as energy with their own eyes.
c. thinking about heat as though it îs energy explains most of the observations made to date.
d. heat has the exact properties of a wave.
e. no other model could fit the observations made to date.

1. Based on the information in the chart, which is the better model?
2. Give a reason for your answer.

10-Core-12A
Arnold heated 60 ml of a liquid for five minutes. After heating it, he remeasured the liquid and found that it had a volume of 62 ml . Look at the diagram below. Using the heat-súbstance model, explain the 2 ml increase in volume.

10.Core-13A

Ralph heated 40 ml of a tiquid to $20^{\circ} \mathrm{C}$. After it was heated, he remeasured the liquid and found that it had a volume of 45 ml . Using the heat-as-energy model, explain how the liquid could increase in volume.

4

Touch two palm size pieces of paper. Rub them together rapidly between your hands, noting any change that occuits.

1. If you kéep rubbing them together, how long will they continue to produce the effect you ghserved?
2. Explain youranswer in terms of the heat-as-energy model.

Suppose that, the energy within a substance called gunk could be measured and that the substance could exist as a solid, a liquid, or a gas, depending on the amount of energy it contained. Braw a line like the one shown below on your answer sheet torepresent differend amounts of energy. Mark the place on this line where you would expect to find each state of the gunk, using S for solid, L "for liquid, and G for gas.

Low energy

Use the heat-as-energy model to explain why it is true that there is more heat in $2 ; 000 \mathrm{ml}$ of water at $30^{\circ} \mathrm{C}$ than in 50 ml of water at $90^{\circ} \mathrm{C}$.

Using the heat-as-energy model, explain, how, a thermometer works to measure hot 10-Core-17A and cold materials.

Look at the graph above. The amount of input energy supplied to the machine is a constant: 100 units, represented by the dotted line on the graph. The solid line on the graph represents the output energy plotted against the temperature change. Explain what happens to the input energy as the amount of usable output energy decreases.
-

In Activity 10-12, diagramed below, you converted the potential energy of the blade . into the motion energy of the cart. You found that the kinetic energy of the cart was less than the potential energy of the blade. Use your heat-as-energy model to explain what appears to be a loss of usable energy.

10-Exc 45-1A
!

During the winter, Iggy visits a friend in the North who has bunk beds in his bedroom. lggy is offered the upper bunk. The heating vent through which the bedroom is heated is on the wall near the floor. Will Iggy be warmer than, just as warm as, or cooler than his friend who is sleeping in the bottom bunk? Explain your answer.

10-Exc 46-1A
A scientific model is discarded when
a. the developer of the model dies.
b. a model which is less broad, but easier to understand, is developed.
c. new observations produce contradictions within the model.
d. a more complicated, mathematically-based model is devetoped.

10-Exc 47-1A

Consider the cooling curve for sulfur shown in the graph below. Ded ribe the proc-
esses that are taking place in sections A, B, and C.

 of water when it changes to ice?

Diagram c

TIME (minutes),

Water is held in place behind a dam. It has potential energy. Wher the dam is opened, water spills out. The water now has kinetic energy (motion energy). As the water falls, it turns a large wheel, or turbine. The turbine generates electricity to produce power for the nearby city. Has all of the potential energy that was stored in the water bchind the dam been converted to electrical energy?. If not, where did the lost energy go or where did the gained energy come from?

